JOM 23044

Synthesis and properties of the ruthenium vinylidene and acetylide complexes containing 1,1'-bis(diphenylphosphino)ferrocene

Masaru Sato and Masato Sekino

Chemical Analysis Center, Saitama University, Urawa, Saitama 338 (Japan) (Received May 15, 1992)

Abstract

RuCl(dppf)(η -C₅H₅) was treated with NH₄PF₆ in acetonitrile to give the cationic complex [Ru(CH₃CN)(dppf)(η -C₅H₅)]PF₆ in good yield, in which no bonding interaction between iron and ruthenium atoms was found. The reaction of RuCl (dppf) (η -C₅H₅)]PF₆ in terminal acetylene in the presence of NH₄PF₆ gave the corresponding vinylidene complexes, which were converted on treatment with base or alumina to the corresponding acetylide complexes. A similar reaction with methyl propiolate at room temperature gave the corresponding vinyl ether complex rather than the acetylide complex as a main product, and a novel degradation reaction to the cationic carbonyl complex was also observed.

The ferrocene derivatives having an electron-donating heteroatom at the 1,1'-positions are superior starting materials for preparing hetero-bimetallic complexes [1]. Since the Group VI metal carbonyl complexes of 1.1'-(dimethylarsino)ferrocene were first synthesized by Bishop and Davison [2], numerous such complexes have been reported [3-16]. We have also prepared transition-metal complexes of polythia[n](1,1')ferrocenophanes [17-20] and 1.1'-bis(diphenylphosphino)ferrocene (dppf) [21], with a view to studying the metal-metal interaction, and confirmed the presence of the weak dative bond between the iron atom of a ferrocene moiety and the Pd^{II} and Pt^{II} atoms. However, there have been few reports concerning the reaction of the ferrocene-containing bimetallic complexes. We report here on reactions of chloro (η -cyclopentadienyl) [1,1'-bis(diphenylphophino)ferrocene-P,P]ruthenium(II), RuCl(dppf)(η -C₅H₅) (1).

Recently, Bruce et al. reported the preparation of RuCl(dppf)(η -C₅H₅) (1) [22]. Compound 1 was treated with NH₄PF₆ in acetonitrile to give [Ru(CH₃CN)-(dppf)(η -C₅H₅)]PF₆ (2a) as yellow needles in a yield of 66%. The use of NH₄BF₄ and NaB(C₆H₅)₄ instead of NF₄PF₆ gave the corresponding complexes 2b and 2c

respectively. Treatment of 1 with AgBF₄ and AgB(C₆-H₅)₄ in acetonitrile gave a similar result, but the same reaction in acetone gave a complicated mixture. In the ¹H NMR spectrum of **2a**, the protons of the ferrocenyl ring appeared at δ 4.31, 4.36, 4.39, and 4.40. On warming at 100°C, the ¹H NMR spectrum showed no substantial change. This asymmetrical and fixed character around the ferrocenyl ring suggested that the ruthenium atom in the complex maintains a piano-stool configuration. This is consistent with the fact that the coordination geometry of both [Ru(CH₃CN)(PPh₃)₂- $(\eta$ -C₅H₅)]⁺ [23] and [Ru(CH₃CN)(Ph₂PCH₂CH₂-PPh₂)(η -C₅H₅)]⁺ [24] is of piano-stool type. These results seem to indicate that there is no interconver-

(2)

Correspondence to: Dr. M. Sato.

a: R=Ph, b: R=t-Bu, c: R=C₆H₁₃, d: R=Fc (Ferrocenyl), e: R=COOMe

sion as shown below and no interaction between the ruthenium and iron atoms in the complex 2a, although coordinatively unsaturated ruthenium complexes, such as $(\eta$ -C₅H₅)Ru(PⁱPr₃)Cl, are known, the geometry of which is a two-legged piano-stool [25].

When complex 1 was reacted with phenylacetylene in the presence of NH4PF6 in dichloromethanemethanol at room temperature for 3 h, the vinylidene complex 3a was obtained in 98% yield. tert-Butyl (3b) and ferrocenyl derivatives (3d) were also isolated in 98% and 89% yields respectively, but the definite product could not be isolated from the reaction mixture of 1 with 1-octyne or methyl propiolate under similar conditions. The ¹H NMR spectrum of **3a** showed the four protons of a ferrocenvl ring at δ 4.40, 4.47, 4.65, and 4.75 and the vinyl proton at δ 5.61. The signal of the cyclopentadienyl (Cp) ring coordinated to the ruthenium atom shifted from δ 4.10 in 1 to δ 5.32 in 3a. In the ¹³C NMR spectrum of **3a**, the signal of the carbenic carbon appeared at 356.5 ppm as a low-intensity triplet $[J(^{13}C-^{31}P) = 17.0 \text{ Hz}]$. These spectral data indicate that the complex 3a involves a vinvlidene structure as shown in [Ru(C=CHPh)(PPh₃)₂(η -C₅H₅)]PF₆ (4) [26]. The appearance of four proton and carbon signals for the ferrocenyl ring in the ¹H and ¹³C NMR spectra respectively, suggests that an asymmetrical and rigid structure of the complexes is maintained at least at room temperature. The assignment of the ferrocenyl

ring protons in the ferrocenyl vinylidene derivatives 3d was accomplished using the 2D H,H-COSY experiment. The signals of δ 4.49 and 4.40 are correlated with each other and concurrently to the signals at δ 4.79 and 4.64 respectively. No correlation between the latter signals was observed. This indicates that the former and the latter signals are assigned to the β - and α -protons of the ferrocenyl ring of dppf respectively. The remaining two signals at δ 3.71 and 4.10 are correlated only to each other and are therefore assigned to the ring protons of the ferrocenyl group connected to the vinylidene carbon.

The vinylidene complex 3a was treated with methanolic KOH under stirring to give the corresponding acetylide complex 5a in 76% yield. Similarly, the ferrocenyl acelylide complex 5d was acquired from the vinylidene derivative 3d in good yield. In this conversion, alumina can be used as a weak base [24]. For example, 3b was converted to 5b by column chromatography on alumina in quantitative yield. When the reaction mixture of 1 with phenylacetylene in the presence of NH_4PF_6 was directly chromatographed on alumina, 5a was obtained in quantitative yield. The octyne derivative 5c was prepared in 49% yield using this procedure, although the stable vinvlidene complex 3c could not be isolated. These compounds showed the stretching vibration of the C=C bond near 2100 cm⁻¹. In the ¹³C NMR spectra of these complexes the signal

Scheme 1.

of the acetylene carbon connected to the ruthenium atom was detected as a triplet in the range 85–120 ppm, but the other carbon atom of the acetylene ligand appeared near 115 ppm. These spectral data confirm these compounds to be an acetylide complex.

The reaction of 1 and methyl propiolate in the presence of NH₄PF₆ in refluxing methanol, followed by column chromatography of the condensed reaction mixture on alumina, gave only an intractable mixture. However, when the reaction was carried out at room temperature, three products were isolated. One of them was a trace amount of the acetylide complex 5e, which was prepared alternatively in good yield in a similar reaction using acetone in place of methanol as a solvent. The main product was the vinyl complex 6. Complex 6 was obtained as a mixture of two isomers in 54% yield, the ratio of which was calculated to be 7:1 from the intensity of the methyl signals of the methoxycarbonyl group. The structure of 6 was assigned by the ¹H NMR spectrum, which gave the vinyl proton at δ 4.98 and the two methoxyl protons at δ 4.43 and 4.58 in the major isomer. The ¹³C NMR spectrum of 6 supported the above assignment: the signals of the carbonyl and olefinic carbons in the major isomer of 6 appeared at δ 154.85 and 105.77 respectively, and the olefinic carbon connected to the ruthenium atom was observed at δ 90.04. The last product was assigned as the cationic carbonyl complex 7, in which $\nu(CO)$ was observed at 1974 cm^{-1} and the carbon signal for the metal carbonyl appeared at δ 203.34 ppm which is in the range of resonance of typical carbonyl carbons connected to the metal atom (190-220 ppm) [27]. This is an unprecedented product in such reactions, although the reaction of the vinylidene complex 4 and water was reported to give the benzylcarbonyl complex $(\eta$ -C₅H₅)(Ph₃P)Ru(CO)CH₂Ph [28]. Complex 7 seems to be formed from the addition of OH⁻ to the intermediate vinylidene complex and subsequently the proton transfer shown in Scheme 1, because (i) the formation of 7 was hardly observed in CH₂Cl₂-acetone, and (ii) the acetylide complex 5e was almost quantitatively converted to 7 in wet THF/CH₂Cl₂ in the presence of acid after 1 h. The reaction of 5e and a drop of 48% HBF₄ aqueous solution in $CD_2Cl_2-C_4D_8O_2$ was pursued by ¹H NMR spectroscopy. Immediately after the addition of 48% HBF₄ aqueous solution, the signals due to the vinylidene complex 3e appeared (δ 5.37 (s, 5H), 5.24 (s, 1H), 4.97, 4.74, 4.60, 4.54 (s, 2H × 4), 3.43 (s.3H), but after 10 h these signals had nearly disappeared and new signals due to complex 7 (δ 5.00 (s, 5H), 4.83, 4.67, 4.56, 4.43 (s, 2H × 4)) and methyl acetate (δ 2.00 (s) and 3.61 (s)) were observed.

It has been reported that the vinylidene complex 4 is converted to the carbene complex $[(\eta - C_5H_5)(Ph_3P)_2-$ Ru{C(OMe)CH₂Ph}]PF₆ (8) in refluxing methanol for 24 h in a high yield [28]. Under similar conditions, however, the vinylidene complex 3a gave an inseparable mixture (1:1) of 3a and the corresponding carbene complex (9a). Thus, the reactivity of 3a for methanol is lower than that of 4. However, we found that the vinyl complex 6 was obtained in 54% yield from the reaction of 1 with methyl propiolate and NH₄PF₆ in methanol

at room temperature for 4 h followed by subsequent chromatography on alumina. Alternatively, it has been reported that the reaction of $(\eta - C_5H_5)(Ph_3P)_2RuCl$ with methyl propiolate in the presence of NH_4PF_6 in refluxing methanol for 45 min gave the vinylidene complex $[(\eta - C_5H_5)(Ph_3P)_2Ru(C=CHCO_2Me)]PF_6$ (10) in 47% yield [26], and the vinylidene complex (10) (prepared from the acetylide complex $(\eta - C_5H_5)(Ph_3 P_{2}Ru(C=CCO_{2}Me)$ (11)) furnished the carbene complex $[(\eta - C_5H_5)(Ph_3P)_2Ru\{C(OMe)CH_2Ph\}]PF_6$ at room temperature only for 2 h in 72% yield [28]. Therefore, the carbomethoxy vinylydene complex 3e is also considered to be less reactive with methanol than the bis(triphenylphosphine) analogue (10). Bruce and Swinger [28] confirmed that the reactivity of the vinylidene complex towards methanol was predominantly controlled by steric effects and was inversely proportional to the cone angle of the ligands. The cone angle of the dppf ligand seems to be similar to that of triphenvlphosphine, but the bite angle in the dppf complex is fairly different from that in bis(triphenylphosphine). Therefore, the retardation in the reaction of 3a and 3e compared with 4 and 10 respectively, is ascribed to the steric effects which are dependent on the different bite

angle of the two bis-phosphine ligands around the ruthenium atom.

1. Experimental details

The melting points were measured using a differential scanning calorimeter, Seiko DSC-20. The IR spectra were taken using a Hitachi 270-50 IR spectrometer. The ¹H and ¹³C NMR spectra were obtained on a Brucker AM-400 spectrometer, TMS being chosen as the standard material.

1.1. Materials

RuCl(PPh₃)₂(η -C₅H₅) [29], ferrocenylacetylene [27] and 1,1'-bis(diphenylphosphino)ferrocene [30] were prepared by the methods described in the literature. RuCl(dppf)(η -C₅H₅) (1) was prepared by a modification of the procedure reported by Bruce et al. [22]: slight excess of dppf (1.11 g, 2.0 mmol) and RuCl(PPh₃)₂(η -C₅H₅) (1.38 g, 1.9 mmol) were refluxed for 8 h in benzene (30 ml). After evaporation, the residue was chromatographed on alumina to give 1, which was recrystallized from CH₂Cl₂-EtOH (98% yield).

1.2. $[Ru(CH_3CN)(dppf)(\eta - C_5H_5)](PF_6)$ (2a)

1.2.1. Method A

To a suspension of 1 (76 mg, 0.1 mmol), NH_4PF_6 (20 mg, 0.13 mmol) in dry acetonitrile (25 ml) was added, and the mixture was refluxed for 3 h. After evaporation under vacuum, the residue was extracted with CH_2Cl_2 (5 ml). The extract was filtered through Celite and evaporated. The residue was recrystallized from CH_3CN -ether to give **2a** as a yellow solid (58 mg, 66% yield).

1.2.2. Method B

To a suspension of 1 (76 mg, 0.1 mmol) in acetonitrile (20 ml) was added AgPF₆ (25 mg, 0.1 mmol), and the mixture was stirred for 1 h. The yellow solution was filtered and evaporated under vacuum. The residue was recrystallized from CH₃CN-ether to give 2a as yellow needles (86 mg, 59.2%), m.p. 240°C. Found: C, 54.24; H, 4.26; N, 2.96. $C_{41}H_{36}NF_6P_3FeRu \cdot CH_3CN$ calcd.: C, 54.50; H, 4.14; N, 2.95%. ¹H NMR (CDCl₃): δ 2.28 (s, 3H, CH₃), 4.29, 4.42 (s × 2, 8H, (C₅H₄)₂Fe), 4.38 (s, 5H, CpRu) and 7.2-7.6 (m, 20H, Ph). ¹³C NMR (CDCL₃): δ 4.53 (CH₃CN), 71.49 (s), 72.39 (s), 74.45 (J = 5.4 Hz), 75.39 (t, J = 5.4 Hz), 82.50 (t, J = 27.4 Hz)Hz) (Fc), 83.24 (s, CpRu), 130.06 (s, CH₃CN), 128.15, 128.38 (t × 2, J = 4.9 Hz, C_m), 130.06, 130.61 (s, C_p), 132.15, 134.92 (t \times 2, J = 5.4 Hz, C_o), 134.92, and 139.12 $(t \times 2, J = 23.9 \text{ Hz}, P-C)$. IR (KBr): 2024 (CN) and 836 cm^{-1} (PF6).

1.3. $[Ru(CH_3CN)(dppf)(\eta - C_5H_5)](BF_4)$ (2b)

This complex was prepared using AgBF₄ instead of AgPF₆ according to Method B, giving yellow needles (53 mg, 59.2%), m.p. 211°C. Found: C, 58.17; H, 4.48; N, 3.06. $C_{43}H_{39}B_2F_8N_2P_2FeRu$ calcd.: C, 58.28; H, 4.62; N, 3.10%. ¹H NMR (CDCl₃): δ 2.28 (s, 3H, CH₃), 4.30, 4.39 (s × 4, 8H, (C₅H₄)₂Fe), 4.28 (s, 5H, CpRu) and 7.4–7.6 (m, 20H, Ph). ¹³C NMR (CDCl₃): δ 4.64 (s, CH₃CN), 71.35, 72.32 (t × 2, J = 3.0 Hz), 74.45 (t, J = 3 Hz), 75.39 (t × 2, J = 4.7 Hz), 82.31 (t, J = 26.3 Hz) (Fc), 83.23 (s, CpRu) and 130.31 (s, CH₃CN). IR (KBr): 2040 (CN) and 1056 cm⁻¹ (BF₄).

1.4. $[Ru(CH_3CN)(dppf)(\eta - C_5H_5)](BPh_4)$ (2c)

This compound was prepared according to Method B using AgBPh₄, giving orange crystals (61 mg, 56.0%), m.p. 250°C (dec.). **2c** (159.5 mg, 73.0%) was also obtained from the reaction of 1 (142 mg, 0.2 mmol) with NaBPh₄ (68 mg, 0.2 mmol) according to Method A. Found: C, 71.72; H, 5.30; N, 2.49. $C_{67}H_{59}BN_2P_2FeRu$ calcd.: C, 71.74; H, 5.42; N, 2.21%. ¹H NMR (CDCl₃): δ 2.16 (s, 3H, CH₃CN), 4.19, 4.25, 4.27, 4.34 (s × 4, 8H, (C₅H₄)₂Fe), 4.19 (s, 5H, CpRu) and 6.8–7.5 (m, 30H, Ph). ¹³C NMR (CDCl₃): δ 3.9 (s, CH₃CN), 71.54 (s), 72.54 (S), 74.29 (t, J = 4.2 Hz), 75.39 (t, J = 4.2 Hz), 82.41 (t, J = 25.5 Hz) [(C₅H₄)₂Fe], 83.23 (s, CpRu) and 139.93 (s, CH₃CN).

1.5. $[Ru(C=CHPh)(dppf)(\eta-C_5H_5)](PF_6)$ (3a)

Complex 1 (76 mg, 0.1 mmol) was dissolved in CH₂Cl₂ (5 ml) and a solution of NH₄PF₆ (20 mg, 0.13 mmol) in MeOH (20 ml) was added. To the resulting solution phenylacetylene (three drops, an excess) was added. The mixture was stirred for 3 h to give a deep red solution, which was then filtered through Celite and evaporated. The residue was extracted with CH_2Cl_2 (5 ml) and the extract was filtered into an excess of hexane to give pink precipitates of 3a, m.p. 151°C (95 mg, 98%). Found: C, 58.41%; H, 4.06. $C_{47}H_{39}F_6P_3FeRu$ calcd.: C, 58.33; H, 4.38%. ¹H NMR $(CDCl_3)$: δ 4.40, 4.47, 4.65, 4.75 (s × 4, 8H, $(C_5H_4)_2$ Fe), 5.32 (s, 5H, CpRu), 5.61 (s, 1H, =CH) and 6.6-7.7 (m, 25H, Ph). ¹³C NMR (CDCl₃): δ 71.17 (s), 73.20 (t, J = 3.5 Hz), 74.99 (t, J = 5.5 Hz), 75.19 (t, J = 2.4 Hz), $83.91 \text{ (m)} [(C_5H_4)_2\text{Fe}], 94.17 \text{ (s, CpRu)} 119.47 \text{ (s, =CH)}$ and 356.48 (t, J = 17.0 Hz, Ru=C). IR (KBr): 1646 (C=C) and 836 cm⁻¹ (PF₆).

1.6. $[Ru(C=CH'Bu)(dppf)(\eta-C_5H_5)](PF_6)$ (3b)

t-Butyl acetylene (three drops, an excess) was added to a solution of 1 (0.1 mmol) and NH_4PF_6 (0.1 mmol) in MeOH (20 ml)-CH₂Cl₂ (5 ml). The solution was stirred for 8 h at room temperature to give orange precipitates of **3b** (94 mg, 98% yield), m.p. 150°C (dec.). ¹H NMR (CDCl₃): δ 1.00 (s, 9H, CMe₃), 4.44 (s, 1H, =CH), 4.48, 4.52, 4.61, 4.78 (s × 4, 8H, (C₅H₄)₂Fe), 5.17 (s, 5H, CpRu) and 7.2–7.6 (m, 20H, Ph). ¹³C NMR (CDCl₃): δ 31.92 (s, CMe), 31.50 (s, CH₃), 71.41 (t, J = 2.4 Hz), 73.10 (t, J = 2.4 Hz), 73.74 (t, J = 3.5 Hz), 75.00 (t, J = 5.4 Hz), 84.01 (m) [(C₅H₄)₂Fe], 93.20 (s, CpRu), 119.47 (s, =CH), and 347.67 (t, J = 17.0 Hz, Ru=C). IR (KBr): 1668, 1642 (C=C), 836 cm⁻¹ (PF₆).

1.7. $[Ru(C=CHFc)(dppf)(\eta-C_5H_5)](PF_6)$ (3d)

Ferrocenylacetylene (24 mg, 0.1 mmol) was added to a 0.1 mmol solution of 1 and NH₄PF₆ in MeOH (20 ml)-CH₂Cl₂ (5 ml). The solution was stirred for 3 h at room temperature under bubbling of nitrogen. The dark brown precipitates formed were collected and washed with benzene; they were almost pure **3d** (90 mg, 89% yield), m.p. 158-159°C. Found: C, 57.28; H, 4.24. $C_{51}H_{43}F_6P_3Fe_2Ru$ calcd.: C, 56.95; H, 4.02%. ¹H NMR (CDCl₃): δ 3.71, 4.10 (s × 2, 4H, C₅H₄Fe), 4.17 (s, 5H, CpFe), 4.40, 4.49, 4.64, 4.79 (s × 4, 8H, (C₅H₄)₂Fe), 5.23 (s, 5H, CpRu), 5.33 (s, 1H, =CH) and 7.3-7.9 (m, 20H, Ph). IR (KBr): 1642 (C=C) and 836 cm⁻¹ (PF₆). This compound decomposed on the accumulation for ¹³C measurement because of its instability in solution.

1.8. $[Ru(C \equiv CPh)(dppf)(\eta - C_5H_5) (5a)$

To a solution of complex 1 (76 mg, 0.1 mmol) in CH_2Cl_2 (5 ml) was added a solution of NH_4PF_6 (20 mg, 0.13 mmol) in MeOH (20 ml). Phenylacetylene (three drops, an excess) was added to the solution. After the mixture had been stirred for 3 h, a solution of KOH (6 mg, 0.1 mmol) in MeOH (2 ml) was added to the reaction mixture. The colour of the solution turned immediately from deep red to yellow. The yellow solution was filtered and evaporated under vacuum. The residue was chromatographed on alumina by elution of CH₂Cl₂ to afford 5a (62 mg, 76%) as yellow crystals, m.p. 271°C. When alumina was used as base instead of KOH, 5a was obtained in 98% yield. Found: C, 68.46; H, 4.56. C₄₇H₃₈P₂FeRu calcd.: C, 68.70; H, 4.66%. ¹H NMR (CDCl₃): δ 4.00, 4.15, 4.30, 5.33 $(s \times 4, 8H, (C_5H_4)_2Fe), 4.30 (s, 5H, CpRu) and 7.0-7.9$ (m, 25H, Ph). ¹³C NMR (CDCl₃): δ 67.78 (s), 71.28 (s), 73.00 (s), 76.52 (t, J = 5.1 Hz), 88.67 (t, J = 24 Hz) $[(C_5H_4)_2Fe]$, 84.58 (s, CpRu) 112.25 (s, =CPh), 116.73 (t, J = 26.1 Hz, Ru-C=), 123.08, 128.48, 128.98 and 130.60 (s \times 4, Ph). IR (KBr): 2112 cm⁻¹.

1.9. $[Ru(C \equiv C'Bu)(dppf)(\eta - C_5H_5)]$ (5b)

t-Butyl acetylene three drops, excess) was added to a solution of 1 (0.1 mmol) and NH_4PF_6 (1 mmol) in MeOH (20 ml)-CH₂Cl₂ (5 ml). Then the mixture was stirred for 8 h. The resulting solution was filtered and evaporated under vacuum. The residue was chromatographed on alumina by elution of CH_2Cl_2 to afford **5b** (79 mg, 87%) as yellow crystals, m.p. 255°C. Found: C, 67.44; H, 5.47. $C_{45}H_{42}P_2FeRu$ calcd.: C, 67.41; H, 5.28%. ¹H NMR (CDCl₃): δ 1.28 (s, 9H, CH₃), 3.95, 4.20, 4.28, 5.55 (s × 4, 8H, (C₅H₄)₂Fe), 4.14 (s, 5H, CpRu) and 7.2–7.9 (m, 25H, Ph). ¹³C NMR (CDCl₃): δ 29.99 (s, CMe), 33.10 (s, CH₃), 67.56 (s), 70.65 (s), 72.72 (s), 77.24 (t, J = 7.0 Hz), 89.18 (t, J = 23.1 Hz) [(C₅H₄)₂Fe], 84.49 (s, CpRu), 86.93 (t, J = 26.2 Hz, Ru–C=), 117.99 (s, =CBu). IR (KBr): 2084 (C=C) cm⁻¹.

1.10. $[Ru(C \equiv C^n hex)(dppf)(\eta - C_5 H_5)]$ (5c)

This complex was prepared using the same procedure described above, giving yellow crystals (42 mg, 49%), m.p. 192.5–193°C. Found: 67.34; H, 5.80. $C_{47}H_{46}P_2FeRu \cdot \frac{1}{2}(C_2H_5)_2O$ calcd.: C, 67.60; H, 5.79%. ¹H NMR (CD₂Cl₂): δ 0.89 (t, J = 7.0 Hz, CH₃), 1.2–1.5 (m, 8H, CH₂), 2.44 (t, J = 7.0 Hz, CH₂C-), 4.01, 4.24, 4.27, 5.35 (s × 4, 8H, (C₅H₄)₂Fe), 4.20 (s, 5H, CpRu) and 7.2–7.9 (m, 25H, Ph). ¹³C NMR (CDCl₃): δ 14.42 (CH₃), 23.20, 23.56, 29.52, 31.69, 32.29 (CH₂×5), 68.39 (s), 71.42 (t, J = 2.5 Hz), 73.46 (s), 77.29 (t, J = 4.9 Hz), 89.85 (t, J = 23 Hz) [(C₅H₄)₂Fe], 84.46 (s, CpRu), 90.64 (t, J = 26.4 Hz, Ru–C=), 109.29, (s, =CHex). IR(KBr): 2100 cm⁻¹ (C=C).

1.11. $[Ru(C \equiv CFc)(dppf)(\eta - C_5H_5)](PF_6)$ (5d)

Ferrocenylacetylene (24 mg, 0.1 mmol) was added to a solution of 1 (0.1 mmol) and NH_4PF_6 (0.1 mmol) in MeOH (20 ml)- CH_2Cl_2 (10 ml). The solution was stirred for 3 h at room temperature under bubbling of nitrogen. To the reaction mixture a solution of NaOMe (sodium (2.3 mg, 0.1 mmol) in MeOH (2 ml)) was added. The orange precipitates formed were collected and recrystallized from CH₂Cl₂-hexane to give 5d as orange fine needles (85 mg, 92%), m.p. 300°C. Found: C, 65.74; H, 4.84. C₅₁H₄₂P₂Fe₂Ru calcd.: C, 65.89; H, 4.55%. ¹H NMR (CDCl₃): δ 4.01 (s, 5H), 4.02, 4.21 $(t \times 2, J = 1.6 \text{ Hz}, 4\text{H})$ (Fc), 4.07, 4.34, 4.36, 5.53 (s × 4, 8H, $(C_5H_4)_2$ Fe), 4.28 (s, 5H, CpRu), and 7.3-7.9 (m, 20H, Ph). IR (KBr) 2080 cm⁻¹ (C=C). The ¹³C NMR spectrum could not be obtained because of its instability in solution.

1.12. Reaction of complex 1 with methyl propiolate

To a solution of 1 (76 mg, 0.1 mmol) in CH_2Cl_2 (20 ml)–MeOH (10 ml) was added NH_4PF_6 (20 mg, 0.1 mmol). After methyl propiolate (three drops, an excess) had been added, the mixture was stirred for 8 h at room temperature under nitrogen. The solvent was evaporated under vacuum and the residue was chromatographed on alumina by elution of CH_2Cl_2 . The following three compounds were isolated.

1.12.1. $(\eta - C_5 H_5)(dppf)Ru(C \equiv CCOOMe)$ (5e)

Yellow crystals (recrystallized from CH₂Cl₂-hexane), m.p. 277°C. Found: C, 65.17; H, 5.24%. C₄₃H₃₆O₂P₂FeRu $\cdot \frac{1}{2}C_6H_{14}$ calcd.: C, 65.33; H, 5.00%. ¹H NMR (CD₂Cl₂): δ 3.65 (s, 3H, OMe), 4.06, 4.31, 4.34, 5.44 (s × 4, 8H, (C₅H₄)₂Fe), 4.36 (s, 5H, CpRu), 7.3-7.7 (m, 20H, -Ph). ¹³C NMR (CD₂Cl₂): δ 51.37 (s, OMe), 68.34 (t, J = 2.7 Hz), 71.97 (t, J = 3.2 Hz), 73.51 (s), 76.47 (t, J = 5.4 Hz), 88.23 (t, J = 25.6 Hz) [(C₅H₄)₂Fe], 85.52 (t, J = 2.2 Hz, CpRu), 105.76 (s, \equiv CCO₂Me), 137.12 (t, J = 24.2 Hz, Ru-C \equiv), 153.10 (s, CO). IR (KBr): 2048 (C \equiv C) and 1662 (CO) cm⁻¹.

1.12.2. $(\eta - C_5 H_5)(dppf)Ru[C(OMe) = CHCOOMe]$ (6)

Yellow needles (recrystallized from CH₂Cl₂hexane), m.p. 204-205°C. Found: C, 61.06; H, 5.09. $C_{44}H_{40}O_{3}P_{2}FeRu \cdot \frac{1}{2}CH_{2}Cl_{2}$ calcd.: C, 60.87; H, 4.82%. ¹H NMR (CDCl₃): (major isomer) δ 3.44, 3.58 $(s \times 2, 6H, OMe)$, 4.01 (s, 2H), 4.29 (s, 4H), 4.75 (s, 2H (C₅H₄)₂Fe], 4.31 (s, 5H, CpRu), 4.51 (s, 1H), and 7.2-7.6 (m, 20H, Ph); (minor isomer) δ 3.09, 3.30 $(s \times 2, 6H, OMe), 4.09, 4.25, 4.31, 4.35 (s \times 4, 8H)$ $[(C_5H_4)_2Fe)]$, 4.42 (s, 5H, CpRu), and 5.56 (s, 1H). ¹³C NMR (CD₂Cl₂): (major isomer) δ 51.36, 62.51 (s \times 2, OMe), 68.34 (s), 71.98 (s), 73.52 (s), 76.47 (t, J = 5.7Hz), 88.22 (t, J = 24.1 Hz) [(C₅H₄)₂Fe], 85.51 (s, CpRu), 90.04 (RuC=), 105.77 (s, =CH), and 154.85 (CO); (minor isomer) δ 49.04, 54.01 (s \times 2, OMe), 68.15 (s), 71.20 (s), 73.36 (s), 76.59 (t, J = 5.7 Hz) $[(C_5H_4)_2Fe]$, 85.76 (s, CpRu), 91.35 (RuC=), 106.77 (s, =CH), and 162.25 (CO). IR (KBr): 1744 cm⁻¹.

1.12.3. $[(\eta - C_5 H_5)(dppf)RuCO]PF_6$ (7)

Yellow oil. ¹H NMR (CDCl₃): δ 4.43, 4.48, 4.68, 4.74 (s × 4, 8H, (C₅H₄)₂Fe), 4.91 (s, 5H, CpRu), 7.4–7.6 (m, 20H, Ph). IR (KBr): 1974 cm⁻¹.

When the reaction was carried out in anhydrous CH_2Cl_2 (20 ml)-acetone (10 ml), only the acetylide complex 5e was obtained in 79% yield.

1.13. $[(\eta - C_5 H_5)(dppf)RuCO]BF_4$

To a solution of **5e** (25 mg, 0.03 mmol) in CH₂Cl₂ (2 ml)–THF (4 ml) was added aqueous tetrafluoroboric acid (0.5 ml). The solution was stirred for 1 h. After evaporation of the solvent under vacuum, the residue was dissolved in CH₂Cl₂. The solution was washed with water and dried. After evaporation, the residue was chromatographed on alumina by elution with CH₂Cl₂ to give the title compound (23 mg, 88%) as yellow oil, which was crystallized from CH₂Cl₂–hexane to yield yellow–orange crystals, m.p. 142°C (dec.). Found: C, 57.90; H, 4.42%. C₄₀H₃₃BF₄OP₂FeRu calcd.: C, 57.80; H, 4.40%. IR (KBr): 1974 (M–CO) and 1020–1100 cm⁻¹ (BF₄). ¹H NMR (CDCl₃): δ 4.43 (s,

2H), 4.47 (s, 2H), 4.70 (s, 2H), 4.72 (s, 2H), 4.95 (s, 5H), and 7.4–7.6 (m, 20H). ¹³C NMR (CDCl₃): d 71.29 (s), 73.21 (s), 75.20 (s), 73.92 (t, J = 5.2 Hz), 83.75 (t, J = 30.5 Hz) [(C₅H₄)₂Fe], 90.01 (s, CpRu), 203.34 (s, RuCO).

References

- 1 W. R. Cullen and J. D. Woolins, Coord. Chem. Rev., 39 (1981) 1.
- 2 J. J. Bishop and A. Davison, Inorg. Chem., 10 (1971) 826.
- 3 W. R. Cullen, T.-J. Kim, F. W. B. Einstein and T. Jones, Organometallics, 2 (1983) 714; W. R. Cullen, T.-J. Kim, F. W. B. Einstein and T. Jones, *Organometallics*, 4 (1985) 346.
- 4 D. Seyferth, B. W. Hames, T. G. Rucker, M. Cowie and R. S. Dickson, Organometallics, 2 (1983) 472.
- 5 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, and K. Hirotsu, J. Am. Chem. Soc., 104 (1984) 158.
- 6 I. R. Butler, W. R. Cullen, T.-J. Kim, S. T. Rettig and J. Trotter, Organometallics, 4 (1985) 972.
- 7 F. W. B. Einstein and T. Jones, Acta Crystallogr., Sect. C, 41 (1985) 365.
- 8 B. McCulloch, D. L. Ward, J. D. Woolins and C. H. Brubacker, Jr., Organometallics, 4 (1985) 1425.
- 9 S. Onaka, Bull. Chem. Soc. Jpn., 59 (1986) 2359.
- 10 S. Akabori, T. Kumagai, T. Shirashige, S. Sato, K. Kawazoe, C. Tamura and M. Sato, Organometallics, 6 (1987) 526.
- 11 T. M. Miller, K. J. Ahmed and M. S. Wrighton, *Inorg. Chem.*, 28 (1989) 2347.
- 12 S. Onaka, A. Mizuno and S. Takagi, Chem. Lett., (1989) 2037.
- 13 E. W. Abel, N. J. Long, K. G. Orrell, A. G. Osborne, V. Sik, P. A. Bates and M. B. Hursthouse, J. Organomet. Chem., 367 (1989) 275.
- 14 T. S. A. Hor and L.-T. Phang, J. Organomet. Chem., 381 (1990) 121.
- 15 U. Casellato, B. Corain, R. Graziani, B. Longato and G. Pilloni, *Inorg. Chem.*, 29 (1990) 1193.
- 16 M. Saburi, K. Aoyagi, T. Kodama, T. Takahashi, Y. Uchida, K. Kozawa and T. Uchida, *Chem. Lett.*, (1990) 1909.
- 17 M. Sato, S. Tanaka, S. Akabori and Y. Habata, Bull. Chem. Soc. Jpn., 59 (1986) 1515.
- 18 M. Sato, K. Suzuki and S. Akabori, Bull. Chem. Soc. Jpn., 59 (1986) 3611.
- 19 M. Sato, S. Akabori, M. Katada, I. Motoyama and H. Sano, Chem. Lett., (1987) 1847.
- 20 M. Sato, K. Suzuki and S. Akabori, Chem. Lett., (1987) 2239.
- 21 M. Sato, M. Sekino and S. Akabori, J. Organomet. Chem., 344 (1988) C31.
- 22 M. I. Bruce, I. R. Butler, W. R. Cullen, G. A. Koutsantonis, M. R. Snow and E. R. T. Tiekink, Aust. J. Chem., 41 (1988) 963.
- 23 T. Blackmore, M. I. Bruce and F. G. A. Stone, J. Chem. Soc. A, (1971) 2376.
- 24 G. S. Ashby, M. I. Bruce, I. B. Tomkins and R. C. Wallis, Aust. J. Chem., 32 (1979) 1003.
- 25 I. K. Campion, R. H. Heyn and T. D. Tilley, J. Chem. Soc., Chem. Commun., (1988) 278.
- 26 M. I. Bruce and R. C. Wallis, Aust. J. Chem., 32 (1979) 1471.
- 27 B. E. Mann and B. F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, New York, 1981.
- 28 M. I. Bruce and A. G. Swinger, Aust. J. Chem., 33 (1980) 1471.
- 29 M. I. Bruce, C. Hameister, A. G. Swincer and R. C. Wallis, *Inorg. Synth.*, 21 (1982) 78.
- 30 J. J. Bishop, A. Davison, M. L. Katcher, D. W. Lichtenberg, R. E. Merrill and J. C. Smart, J. Organomet. Chem., 27 (1971) 241.